The effect of bicuspid aortic valve versus tricuspid aortic valve as a risk factor for aortic dilatation: a systematic review and meta-analysis

Main Article Content

Rama Azalix Rianda
Ivan Danindra
Dicky Aligheri Wartono

Keywords

bicuspid aortic valve, tricuspid aortic valve, aortic dilatation

Abstract

Background: The enlargement of the ascending aorta (AA) is a frequent finding in clinical practice. Age, gender, and body size have been shown to be important determinants of AA diameter. One of the most prevalent congenital heart conditions is bicuspid aortic valve (BAV) disease, which primarily affects male subjects and has a population prevalence of 0.5% to 2.0%. Purely severely stenotic BAVs developed a moderate dilation of the aorta at an early age, while TAVs (Tricuspid Aortic Valves) did not. This study aims to compare BAV and TAV as risk factors for aortic dilatation.


Methods: A systematic literature search was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines by using PubMed/Medline, Scopus, and ScienceDirect databases according to PICO. The studies obtained were adjusted to the eligibility criteria. We conducted a journal appraisal assessment using the CASP 2024 tools for the 10 included studies. Meta-analysis was performed using Review Manager 5.4.


Result: Out of 208 studies, 10 studies are included for a systematic review according to eligibility criteria. From the baseline characteristics, BAV with aortic dilatation is often seen at a younger age compared to TAV. 5 studies are analyzed for the incidence risk of aortic dilatation between BAV and TAV group (OR 5.16; 95% CI 2.69, 9.92; p<0.001) and 6 studies are analyzed for the aortic diameter between BAV and TAV group (OR 0.55; 95% CI -1.37, 2.46; p<0.58).


Conclusion: Our systematic review-meta-analysis study found that there is an increase in ithe ncidence risk of aortic dilatation in BAV patients compared to TAV patients. Our study result supports the guideline designed by the American Association for Thoracic Surgery that suggests patients undergoing concurrent heart surgery, concomitant ascending aorta/root repair should be actively performed when the aortic diameter is 45 mm.

Abstract 4 | PDF Downloads 1

References

1. Turkbey EB, Jain A, Johnson C, Redheuil A, Arai AE, Gomes AS, et al. Determinants and normal values of ascending aortic diameter by age, gender, and race/ethnicity in the Multi-Ethnic Study of Atherosclerosis (MESA). J Magn Reson Imaging. 2013/05/16. 2014;39(2):360–8. Available from: https://pubmed.ncbi.nlm.nih.gov/23681649
2. Isselbacher EM, Preventza O, Black JH, Augoustides JG, Beck AW, Bolen MA, et al. Correction to: 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022;146(13). Available from: http://dx.doi.org/10.1161/cir.0000000000001097
3. Wang J, Deng W, Lv Q, Li Y, Liu T, Xie M. Aortic Dilatation in Patients With Bicuspid Aortic Valve. Front Physiol. 2021;12:615175. Available from: https://pubmed.ncbi.nlm.nih.gov/34295254
4. Fujiwara J, Orii M, Takagi H, Chiba T, Sasaki T, Tanaka R, et al. Aortic Elongation in Bicuspid Aortic Valve with Aortic Stenosis Assessed by Thin-Slice Electrocardiogram-Gated Computed Tomography. Int Heart J. 2022;63(2):319–26. Available from: http://dx.doi.org/10.1536/ihj.21-244
5. Yasuda H, Nakatani S, Stugaard M, Tsujita-Kuroda Y, Bando K, Kobayashi J, et al. Failure to Prevent Progressive Dilation of Ascending Aorta by Aortic Valve Replacement in Patients With Bicuspid Aortic Valve: Comparison With Tricuspid Aortic Valve. Circulation. 2003;108(10_suppl_1). Available from: http://dx.doi.org/10.1161/01.cir.0000087449.03964.fb
6. Swahn E, Lekedal H, Engvall J, Nyström FH, Jonasson L. Prevalence and determinants of dilated ascending aorta in a Swedish population: a case-control study. Eur Hear J open. 2023;3(5):oead085–oead085. Available from: https://pubmed.ncbi.nlm.nih.gov/37767013
7. Kassis N, Saad AM, Ahuja KR, Gad MM, Abdelfattah OM, Isogai T, et al. Impact of thoracic aortic aneurysm on outcomes of transcatheter aortic valve replacement: A nationwide cohort analysis. Catheter Cardiovasc Interv. 2020;97(3):549–53. Available from: http://dx.doi.org/10.1002/ccd.29195
8. Heng E, Stone JR, Kim JB, Lee H, MacGillivray TE, Sundt TM. Comparative Histology of Aortic Dilatation Associated With Bileaflet Versus Trileaflet Aortic Valves. Ann Thorac Surg. 2015;100(6):2095–101. Available from: http://dx.doi.org/10.1016/j.athoracsur.2015.05.105
9. Boudoulas KD, Wolfe B, Ravi Y, Lilly S, Nagaraja HN, Sai-Sudhakar CB. The aortic stenosis complex: aortic valve, atherosclerosis, aortopathy. J Cardiol. 2015;65(5):377–82. Available from: http://dx.doi.org/10.1016/j.jjcc.2014.12.021
10. Nakamura Y, Ryugo M, Shikata F, Okura M, Okamura T, Yasugi T, et al. The analysis of ascending aortic dilatation in patients with a bicuspid aortic valve using the ratio of the diameters of the ascending and descending aorta. J Cardiothorac Surg. 2014;9:108. Available from: https://pubmed.ncbi.nlm.nih.gov/24947564
11. Billaud M, Phillippi JA, Kotlarczyk MP, Hill JC, Ellis BW, St Croix CM, et al. Elevated oxidative stress in the aortic media of patients with bicuspid aortic valve. J Thorac Cardiovasc Surg. 2017/05/25. 2017;154(5):1756–62. Available from: https://pubmed.ncbi.nlm.nih.gov/28651938
12. Jackson V, Eriksson MJ, Caidahl K, Eriksson P, Franco-Cereceda A. Ascending aortic dilatation is rarely associated with coronary artery disease regardless of aortic valve morphology. J Thorac Cardiovasc Surg. 2014;148(6):2973-2980.e1. Available from: http://dx.doi.org/10.1016/j.jtcvs.2014.08.023
13. Haunschild J, Schellinger IN, von Salisch S, Bakhtiary F, Misfeld M, Mohr FW, et al. Granular Media Calcinosis in the Aortic Walls of Patients With Bicuspid and Tricuspid Aortic Valves. Ann Thorac Surg. 2017;103(4):1178–85. Available from: http://dx.doi.org/10.1016/j.athoracsur.2016.07.018
14. Singh A, Horsfield MA, Bekele S, Greenwood JP, Dawson DK, Berry C, et al. Aortic stiffness in aortic stenosis assessed by cardiovascular MRI: a comparison between bicuspid and tricuspid valves. Eur Radiol. 2018/11/28. 2019;29(5):2340–9. Available from: https://pubmed.ncbi.nlm.nih.gov/30488106
15. Yuan S-M, Jing H, Lavee J. The bicuspid aortic valve and its relation to aortic dilation. Clinics (Sao Paulo). 2010;65(5):497–505. Available from: https://pubmed.ncbi.nlm.nih.gov/20535368
16. Michelena HI, Khanna AD, Mahoney D, Margaryan E, Topilsky Y, Suri RM, et al. Incidence of Aortic Complications in Patients With Bicuspid Aortic Valves. JAMA. 2011;306(10):1104. Available from: http://dx.doi.org/10.1001/jama.2011.1286
17. Chironi G, Orobinskaia L, Mégnien J-L, Sirieix M-E, Clément-Guinaudeau S, Bensalah M, et al. Early thoracic aorta enlargement in asymptomatic individuals at risk for cardiovascular disease: determinant factors and clinical implication. J Hypertens. 2010;28(10):2134–8. Available from: http://dx.doi.org/10.1097/hjh.0b013e32833cd276
18. Keane MG, Wiegers SE, Plappert T, Pochettino A, Bavaria JE, Sutton MGSJ. Bicuspid Aortic Valves Are Associated With Aortic Dilatation Out of Proportion to Coexistent Valvular Lesions. Circulation. 2000;102(suppl_3). Available from: http://dx.doi.org/10.1161/circ.102.suppl_3.iii-35
19. Nistri S, Sorbo MD, Marin M, Palisi M, Scognamiglio R, Thiene G. Aortic root dilatation in young men with normally functioning bicuspid aortic valves. Heart. 1999;82(1):19–22. Available from: https://pubmed.ncbi.nlm.nih.gov/10377302
20. Siu SC, Silversides CK. Bicuspid Aortic Valve Disease. J Am Coll Cardiol. 2010;55(25):2789–800. Available from: http://dx.doi.org/10.1016/j.jacc.2009.12.068
21. Nkomo VT, Enriquez-Sarano M, Ammash NM, Melton LJ, Bailey KR, Desjardins V, et al. Bicuspid Aortic Valve Associated With Aortic Dilatation. Arterioscler Thromb Vasc Biol. 2003;23(2):351–6. Available from: http://dx.doi.org/10.1161/01.atv.0000055441.28842.0a
22. Debl K, Djavidani B, Buchner S, Poschenrieder F, Schmid F-X, Kobuch R, et al. Dilatation of the ascending aorta in bicuspid aortic valve disease: a magnetic resonance imaging study. Clin Res Cardiol. 2008;98(2):114–20. Available from: http://dx.doi.org/10.1007/s00392-008-0731-0
23. Morgan-Hughes GJ, Roobottom CA, Owens PE, Marshall AJ. Dilatation of the aorta in pure, severe, bicuspid aortic valve stenosis. Am Heart J. 2004;147(4):736–40. Available from: http://dx.doi.org/10.1016/j.ahj.2003.10.044
24. Tadros TM, Klein MD, Shapira OM. Ascending Aortic Dilatation Associated With Bicuspid Aortic Valve. Circulation. 2009;119(6):880–90. Available from: http://dx.doi.org/10.1161/circulationaha.108.795401
25. Padang R, Bagnall R, Richmond D, Bannon P, Semsarian C. Rare Non-synonymous Variations in the Transcriptional Activation Domains of GATA5 in Patients with Bicuspid Aortic Valve and its Associated Aortopathy. Hear Lung Circ. 2012;21:S270. Available from: http://dx.doi.org/10.1016/j.hlc.2012.05.662
26. Fedak PWM, de Sa MPL, Verma S, Nili N, Kazemian P, Butany J, et al. Vascular matrix remodeling in patients with bicuspid aortic valve malformations: implications for aortic dilatation. J Thorac Cardiovasc Surg. 2003;126(3):797–805. Available from: http://dx.doi.org/10.1016/s0022-5223(03)00398-2
27. Nordon I, Brar R, Taylor J, Hinchliffe R, Loftus IM, Thompson MM. Evidence from cross-sectional imaging indicates abdominal but not thoracic aortic aneurysms are local manifestations of a systemic dilating diathesis. J Vasc Surg. 2009;50(1):171-176.e1. Available from: http://dx.doi.org/10.1016/j.jvs.2009.03.007
28. Pepe G, Nistri S, Giusti B, Sticchi E, Attanasio M, Porciani C, et al. Identification of fibrillin 1 gene mutations in patients with bicuspid aortic valve (BAV) without Marfan syndrome. BMC Med Genet. 2014;15:23. Available from: https://pubmed.ncbi.nlm.nih.gov/24564502
29. Grewal N, Gittenberger-de Groot AC, Poelmann RE, Klautz RJM, Lindeman JHN, Goumans M-J, et al. Ascending aorta dilation in association with bicuspid aortic valve: A maturation defect of the aortic wall. J Thorac Cardiovasc Surg. 2014;148(4):1583–90. Available from: http://dx.doi.org/10.1016/j.jtcvs.2014.01.027
30. McKellar SH, Tester DJ, Yagubyan M, Majumdar R, Ackerman MJ, Sundt TM. Novel NOTCH1 mutations in patients with bicuspid aortic valve disease and thoracic aortic aneurysms. J Thorac Cardiovasc Surg. 2007;134(2):290–6. Available from: http://dx.doi.org/10.1016/j.jtcvs.2007.02.041
31. Pisano C, Maresi E, Balistreri CR, Candore G, Merlo D, Fattouch K, et al. Histological and genetic studies in patients with bicuspid aortic valve and ascending aorta complications. Interact Cardiovasc Thorac Surg. 2011/12/22. 2012;14(3):300–6. Available from: https://pubmed.ncbi.nlm.nih.gov/22194275
32. Cotrufo M, Corte A Della, De Santo LS, Quarto C, De Feo M, Romano G, et al. Different patterns of extracellular matrix protein expression in the convexity and the concavity of the dilated aorta with bicuspid aortic valve: Preliminary results. J Thorac Cardiovasc Surg. 2005;130(2):504.e1-504.e9. Available from: http://dx.doi.org/10.1016/j.jtcvs.2005.01.016
33. Schmid F-X, Bielenberg K, Schneider A, Haussler A, Keyser A, Birnbaum D. Ascending aortic aneurysm associated with bicuspid and tricuspid aortic valve: involvement and clinical relevance of smooth muscle cell apoptosis and expression of cell death-initiating proteins. Eur J Cardio-Thoracic Surg. 2003;23(4):537–43. Available from: http://dx.doi.org/10.1016/s1010-7940(02)00833-3
34. Kapustin AN, Chatrou MLL, Drozdov I, Zheng Y, Davidson SM, Soong D, et al. Vascular Smooth Muscle Cell Calcification Is Mediated by Regulated Exosome Secretion. Circ Res. 2015;116(8):1312–23. Available from: http://dx.doi.org/10.1161/circresaha.116.305012
35. Proudfoot D. Molecular mechanisms of arterial calcification. Artery Res. 2009;3(4):128. Available from: http://dx.doi.org/10.1016/j.artres.2009.10.001
36. Raaz U, Zöllner AM, Schellinger IN, Toh R, Nakagami F, Brandt M, et al. Segmental aortic stiffening contributes to experimental abdominal aortic aneurysm development. Circulation. 2015/04/22. 2015;131(20):1783–95. Available from: https://pubmed.ncbi.nlm.nih.gov/25904646
37. Moaref A, Khavanin M, Shekarforoush S. Aortic distensibility in bicuspid aortic valve patients with normal aortic diameter. Ther Adv Cardiovasc Dis. 2014;8(4):128–32. Available from: http://dx.doi.org/10.1177/1753944714531062
38. Mahadevia R, Barker AJ, Schnell S, Entezari P, Kansal P, Fedak PWM, et al. Bicuspid aortic cusp fusion morphology alters aortic three-dimensional outflow patterns, wall shear stress, and expression of aortopathy. Circulation. 2013/12/17. 2014;129(6):673–82. Available from: https://pubmed.ncbi.nlm.nih.gov/24345403
39. Della Corte A, Bancone C, Conti CA, Votta E, Redaelli A, Del Viscovo L, et al. Restricted cusp motion in right-left type of bicuspid aortic valves: A new risk marker for aortopathy. J Thorac Cardiovasc Surg. 2012;144(2):360-369.e1. Available from: http://dx.doi.org/10.1016/j.jtcvs.2011.10.014
40. Guzzardi DG, Barker AJ, van Ooij P, Malaisrie SC, Puthumana JJ, Belke DD, et al. Valve-Related Hemodynamics Mediate Human Bicuspid Aortopathy: Insights From Wall Shear Stress Mapping. J Am Coll Cardiol. 2015;66(8):892–900. Available from: https://pubmed.ncbi.nlm.nih.gov/26293758
41. Phillippi JA, Klyachko EA, Kenny 4th JP, Eskay MA, Gorman RC, Gleason TG. Basal and oxidative stress-induced expression of metallothionein is decreased in ascending aortic aneurysms of bicuspid aortic valve patients. Circulation. 2009/04/27. 2009;119(18):2498–506. Available from: https://pubmed.ncbi.nlm.nih.gov/19398671
42. Tsamis A, Phillippi JA, Koch RG, Chan PG, Krawiec JT, D’Amore A, et al. Extracellular matrix fiber microarchitecture is region-specific in bicuspid aortic valve-associated ascending aortopathy. J Thorac Cardiovasc Surg. 2016/02/13. 2016;151(6):1718-1728.e5. Available from: https://pubmed.ncbi.nlm.nih.gov/26979916
43. Phillippi JA, Green BR, Eskay MA, Kotlarczyk MP, Hill MR, Robertson AM, et al. Mechanism of aortic medial matrix remodeling is distinct in patients with bicuspid aortic valve. J Thorac Cardiovasc Surg. 2013/06/12. 2014;147(3):1056–64. Available from: https://pubmed.ncbi.nlm.nih.gov/23764410
44. Tsamis A, Phillippi JA, Koch RG, Pasta S, D’Amore A, Watkins SC, et al. Fiber micro-architecture in the longitudinal-radial and circumferential-radial planes of ascending thoracic aortic aneurysm media. J Biomech. 2013/09/11. 2013;46(16):2787–94. Available from: https://pubmed.ncbi.nlm.nih.gov/24075403
45. Pichamuthu JE, Phillippi JA, Cleary DA, Chew DW, Hempel J, Vorp DA, et al. Differential tensile strength and collagen composition in ascending aortic aneurysms by aortic valve phenotype. Ann Thorac Surg. 2013/09/07. 2013;96(6):2147–54. Available from: https://pubmed.ncbi.nlm.nih.gov/24021768
46. Pasta S, Phillippi JA, Gleason TG, Vorp DA. Effect of aneurysm on the mechanical dissection properties of the human ascending thoracic aorta. J Thorac Cardiovasc Surg. 2011/08/25. 2012;143(2):460–7. Available from: https://pubmed.ncbi.nlm.nih.gov/21868041
47. Phillippi JA, Eskay MA, Kubala AA, Pitt BR, Gleason TG. Altered oxidative stress responses and increased type I collagen expression in bicuspid aortic valve patients. Ann Thorac Surg. 2010;90(6):1893–8. Available from: https://pubmed.ncbi.nlm.nih.gov/21095332
48. Wu D, Shen YH, Russell L, Coselli JS, LeMaire SA. Molecular mechanisms of thoracic aortic dissection. J Surg Res. 2013/06/29. 2013;184(2):907–24. Available from: https://pubmed.ncbi.nlm.nih.gov/23856125
49. Griendling KK, Touyz RM, Zweier JL, Dikalov S, Chilian W, Chen Y-R, et al. Measurement of Reactive Oxygen Species, Reactive Nitrogen Species, and Redox-Dependent Signaling in the Cardiovascular System: A Scientific Statement From the American Heart Association. Circ Res. 2016/07/14. 2016;119(5):e39–75. Available from: https://pubmed.ncbi.nlm.nih.gov/27418630
50. Hill BG, Haberzettl P, Ahmed Y, Srivastava S, Bhatnagar A. Unsaturated lipid peroxidation-derived aldehydes activate autophagy in vascular smooth-muscle cells. Biochem J. 2008;410(3):525–34. Available from: http://dx.doi.org/10.1042/bj20071063
51. Cabre A. Cytotoxic effects of the lipid peroxidation product 2,4-decadienal in vascular smooth muscle cells. Atherosclerosis. 2003;169(2):245–50. Available from: http://dx.doi.org/10.1016/s0021-9150(03)00196-5
52. Holvoet P, Collen D. Oxidation of low density lipoproteins in the pathogenesis of atherosclerosis. Atherosclerosis. 1998;137:S33–8. Available from: http://dx.doi.org/10.1016/s0021-9150(97)00305-5
53. Holvoet P, Mertens A, Verhamme P, Bogaerts K, Beyens G, Verhaeghe R, et al. Circulating Oxidized LDL Is a Useful Marker for Identifying Patients With Coronary Artery Disease. Arterioscler Thromb Vasc Biol. 2001;21(5):844–8. Available from: http://dx.doi.org/10.1161/01.atv.21.5.844
54. Shimoni S, Bar I, Zilberman L, George J. Autoantibodies to Oxidized Low-Density Lipoprotein in Patients with Aortic Regurgitation: Association with Aortic Diameter Size. Cardiology. 2014;128(1):54–61. Available from: http://dx.doi.org/10.1159/000357835
55. Fruhwirth GO, Moumtzi A, Loidl A, Ingolic E, Hermetter A. The oxidized phospholipids POVPC and PGPC inhibit growth and induce apoptosis in vascular smooth muscle cells. Biochim Biophys Acta - Mol Cell Biol Lipids. 2006;1761(9):1060–9. Available from: http://dx.doi.org/10.1016/j.bbalip.2006.06.001
56. Forsell C, Björck HM, Eriksson P, Franco-Cereceda A, Gasser TC. Biomechanical Properties of the Thoracic Aneurysmal Wall: Differences Between Bicuspid Aortic Valve and Tricuspid Aortic Valve Patients. Ann Thorac Surg. 2014;98(1):65–71. Available from: http://dx.doi.org/10.1016/j.athoracsur.2014.04.042
57. Branchetti E, Poggio P, Sainger R, Shang E, Grau JB, Jackson BM, et al. Oxidative stress modulates vascular smooth muscle cell phenotype via CTGF in thoracic aortic aneurysm. Cardiovasc Res. 2013/08/28. 2013;100(2):316–24. Available from: https://pubmed.ncbi.nlm.nih.gov/23985903
58. Cecconi M, Nistri S, Quarti A, Manfrin M, Colonna PL, Molini E, et al. Aortic dilatation in patients with bicuspid aortic valve. J Cardiovasc Med. 2006;7(1):11–20. Available from: http://dx.doi.org/10.2459/01.jcm.0000199777.85343.ec
59. Bonderman D, Gharehbaghi-Schnell E, Wollenek G, Maurer G, Baumgartner H, Lang IM. Mechanisms Underlying Aortic Dilatation in Congenital Aortic Valve Malformation. Circulation. 1999;99(16):2138–43. Available from: http://dx.doi.org/10.1161/01.cir.99.16.2138
60. Dalsgaard M, Kjaergaard J, Pecini R, Iversen KK, Kober L, Moller JE, et al. Predictors of exercise capacity and symptoms in severe aortic stenosis. Eur J Echocardiogr. 2010;11(6):482–7. Available from: http://dx.doi.org/10.1093/ejechocard/jeq002
61. Dalsgaard M, Kjaergaard J, Pecini R, Iversen KK, Køber L, Moller JE, et al. Left Ventricular Filling Pressure Estimation at Rest and During Exercise in Patients With Severe Aortic Valve Stenosis: Comparison of Echocardiographic and Invasive Measurements. J Am Soc Echocardiogr. 2009;22(4):343–9. Available from: http://dx.doi.org/10.1016/j.echo.2009.01.007
62. Borger MA, Fedak PWM, Stephens EH, Gleason TG, Girdauskas E, Ikonomidis JS, et al. The American Association for Thoracic Surgery consensus guidelines on bicuspid aortic valve-related aortopathy: Executive summary. J Thorac Cardiovasc Surg. 2018;156(2):473–80. Available from: https://pubmed.ncbi.nlm.nih.gov/30011756